Vibrational-exciton couplings for the amide I, II, III, and A modes of peptides.
نویسندگان
چکیده
The couplings between all amide fundamentals and their overtones and combination vibrational states are calculated. Combined with the level energies reported previously (Hayashi, T.; Zhuang, W.; Mukamel, S. J. Phys. Chem. A 2005, 109, 9747), we obtain a complete effective vibrational Hamiltonian for the entire amide system. Couplings between neighboring peptide units are obtained using the anharmonic vibrational Hamiltonian of glycine dipeptide (GLDP) at the BPW91/6-31G(d,p) level. Electrostatic couplings between non-neighboring units are calculated by the fourth rank transition multipole coupling (TMC) expansion, including 1/R3 (dipole-dipole), 1/R4 (quadrupole-dipole), and 1/R5 (quadrupole-quadrupole and octapole-dipole) interactions. Exciton delocalization length and its variation with frequency in the various amide bands are calculated. The simulated infrared amide I and II absorptions and CD spectra of 24 residue alpha-helical motifs (SPE3) are in good agreement with experiment.
منابع مشابه
Modeling the vibrational dynamics and nonlinear infrared spectra of coupled amide I and II modes in peptides.
The amide vibrational modes play an important role in energy transport and relaxation in polypeptides and proteins and provide us with spectral markers for structure and structural dynamics of these macromolecules. Here, we present a detailed model to describe the dynamic properties of the amide I and amide II modes and the resulting linear and nonlinear spectra. These two modes have large osci...
متن کاملTwo-Dimensional Vibrational Lineshapes of Amide III, II, I and A Bands in a Helical Peptide.
An effective exciton Hamiltonian for all amide bands is used to calculate the linear absorption and photon echo spectra of a 17 residue helical peptide (YKKKH17). The cross peak bandshapes are sensitive to the inter-band couplings. Fluctuations of the local amide frequencies of the all amide fundamental and their overtone and combination states are calculated using the multipole electric field ...
متن کاملVibrational relaxation in simulated two-dimensional infrared spectra of two amide modes in solution.
Two-dimensional infrared spectroscopy is capable of following the transfer of vibrational energy between modes in real time. We develop a method to include vibrational relaxation in simulations of two-dimensional infrared spectra at finite temperature. The method takes into account the correlated fluctuations that occur in the frequencies of the vibrational states and in the coupling between th...
متن کاملSimulation of vibrational energy transfer in two-dimensional infrared spectroscopy of amide I and amide II modes in solution.
Population transfer between vibrational eigenstates is important for many phenomena in chemistry. In solution, this transfer is induced by fluctuations in molecular conformation as well as in the surrounding solvent. We develop a joint electrostatic density functional theory map that allows us to connect the mixing of and thereby the relaxation between the amide I and amide II modes of the pept...
متن کاملAmide I two-dimensional infrared spectroscopy: methods for visualizing the vibrational structure of large proteins.
Network layouts are introduced as a method to visualize couplings between local amide I vibrations in proteins. The method is used to identify groups of strongly coupled oscillators to block-diagonalize the Hamiltonians, considerably reducing the expense associated with computing infrared spectra of large proteins. The quality of linear and nonlinear spectra generated from block-diagonal Hamilt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 37 شماره
صفحات -
تاریخ انتشار 2007